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Abstract. On a simple modelV (x, y) = Ax2+By2+Cx2y2+D(x2y4+x4y2) we demonstrate
that even in a classically repulsive regime (i.e. at couplings which make the potential decreasing
to−∞ in some directions) quantum mechanics may still support the purely discrete spectrum of
bound states. In our example, there exists a critical boundary of this domain of stability where
a further increase of repulsion causes an explosive escape of particles in infinity.

1. Introduction

The hydrogen atom is one of the best known examples of the confinement of particles
(electrons) in an attractive potential. Its discrete spectrum does not collapse—this has not
been perceived as a paradox from the very early days of quantum mechanics [1]. The
explanation is easily acceptable and returns to the uncertainty principle. The stability of
this atom in the origin may well be extended down to the inverse quadratic central attraction
V(v)(r) ≈ v/r2, r � 1 with a limited strength,v > − 1

4 [2]. An unprotected fall of electrons
to this singularity only takes placebeyondthe ‘natural’ critical couplingv = − 1

4. Its
existence is not surprising—one simply re-accepts the safe classical intuition.

A scarcity ofnon-centralexamples of transition between confinement and its collapse is
surprising and worrying. In more dimensions, our intuition may fail. In classical mechanics,
a warning sign comes from the unexpected emergence of chaos in the anisotropic Coulomb
problem [3]. In two dimensions, the emergence of classical chaos may serve as a guide to
the study of quantum chaos [4]. This seems best illustrated by the elementaryα→ 0 limit
of the quartic polynomial potentialV[α](x, y) = x2y2+ α(x4+ y4) which is bounded from
below [5].

After quantization, the peculiar semi-boundedα → 0 extremeV[0](x, y) = x2y2 has
re-attracted attention as an approximate model of a non-Abelian field [6]. For this reason,
the mathematical gap has quickly been filled. Several versions of the rigorous proof of the
purely quantum confinement property atα = 0 have been delivered by Simon [7]. A full
parallel with coulombic stability has been re-established. On the basis of the Heisenberg
uncertainty principle, each plane wave with energyE > 0 which tries to escape along an
axis (say,x) in infinity proves unable to do so due to the decreasing width of its classically
permitted narrow escape corridorx2y2 6 E with hyperbolic boundaries.

Many questions arise immediately: what are the limits of capacity of the narrow tubes
to prevent the (classically permitted) asymptotical ‘constant speed’ escape of quantum
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particles? What could be a decisive counter-acting mechanism? An acceleration by
repulsion? Which ‘asymptotically bottomless’ repulsive potentials could be interpreted
as (say, two-dimensional) asymptotical analogues of the above-mentioned critical attraction
V(1/2)(r) ≈ −1/(2r)2 ? May a confining two-dimensional quantum potentialV (x, y) be
asymptotically unbounded from below at all?

In this paper, we intend to provide a few answers which, in all their incompleteness, do
not seem entirely trivial. Even for polynomial forces in two dimensions the abundance of
couplings definitely hinders the classification. The semi-classical estimates of the number
of bound states below a given energy may become (and often happen to be) meaningless.
Still, we shall keep our mathematics virtually elementary and emphasize the underlying
(and, sometimes, quite unexpected) physical consequences.

We shall pay attention just to a four-parametric family of particular sextic polynomial
models

V(A,B,C,D)(x, y) = Ax2+ By2+ Cx2y2+D(x2y4+ x4y2) D > 0, C 6= 0.

As we shall see, their special cases with a controllable and tuneable attraction to infinity may
be called repulsive in plain language. In a way resembling the studies of the central attraction
V(−1/4±ε)(r) we do not expect any immediate (and, even less, realistic) applicability of these
repulsive forces. We just seek a connection between unusual asymptotics and a smooth
transition between the confined and de-confined phase in non-central systems.

2. Analysis

2.1. Spectrum

In a preparatory step, let us abbreviateγ = √D > 0 and re-parametrize the couplings
C = 2γ (α + β), B = α2 − γ + δ andA = β2 − γ + δ. Conversely, this defines the new
parameters in terms of the old ones,

α = C

4γ
+ γ A− B

C
β = C

4γ
− γ A− B

C
δ = A+ γ − α2. (1)

Such a change of notation simplifies our following key observation.

Lemma.The spectrum of energies of the Hamiltonian

H(A,B,C,D) = − ∂2

∂x2
− ∂2

∂y2
+ V(A,B,C,D)(x, y) (2)

with the positive parameterδ > 0 is discrete.

Proof. Firstly, let us note that the assumptionC 6= 0 is purely technical. Easily, the proof
at someC < 0 would extend up toC = 0 since, due to the positive semi-definiteness of
x2y2, we may use the inequalityH(A,B,C,D) 6 H(A,B,C+ε2,D). The discrete spectrum of its
left-hand side implies the discrete form of the spectrum of the right-hand side operator. In
the second step, let us pick up a real (and, temporarily, freely variable) numberM > 1 and
split our Hamiltonian into two parts:

H(A,B,C,D) = − 1

M

∂2

∂x2
− 1

M

∂2

∂y2
− M − 1

M

∂2

∂x2
− M − 1

M

∂2

∂y2
+ V(A,B,C,D)(x, y).
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The well known estimate− d2

dq2 + ω2q2 > |ω| of the harmonic-oscillator Hamiltonian may
be recalled to imply

M − 1

M

(
− ∂2

∂x2
+ (α + γy

2)2M

M − 1
x2

)
>
√
M − 1

M
|α + γy2|

and

M − 1

M

(
− ∂2

∂y2
+ (β + γ x

2)2M

M − 1
y2

)
>
√
M − 1

M
|β + γ x2|.

We have|α+ γy2| > α+ γy2 and |β + γ x2| > β + γ x2 so that, irrespectively of the signs
of α andβ, we may conclude that

H(A,B,C,D) >
√
M − 1

M
(α + β)− 1

M

∂2

∂x2
− 1

M

∂2

∂y2
+
[(√

M − 1

M
− 1

)
γ + δ

]
(x2+ y2).

(3)

As long asδ > 0, the new couplings of the quadratic term remain positive for all the
sufficiently largeM > Mmin. With anyMmin > 1 such that

Mmin+
√
Mmin(Mmin− 1) > γ

δ

our HamiltonianH(A,B,C,D) becomes minorized by an ordinary separable harmonic oscillator.
We may infer that it possesses the discrete spectrum only. �

Our lemma does not seem surprising. Indeed, wheneverα2 + δ > γ andβ2 + δ > γ ,
our potentialV(A,B,C,D)(x, y) is minorized by its harmonic-oscillator part. Abruptly, the
situation changes when we admit negative values ofA or B. The repulsivity constraint
A < 0 (i.e. γ − α2 > δ > 0) would induce anacceleratedescape of a classical particle
along the semi-axes±x. For B < 0 (i.e. γ − β2 > δ > 0) the escape would occur along
±y. At both these conditions (i.e. forγ −max(α2, β2) > δ > 0), the origin becomes a local
maximum ofV(A,B,C,D)(x, y). Our potential acquires a repulsive and bottomless form. At
α = β = 0, γ = 1.1 andδ = 0.1 its shape is displayed in figure 1.

2.2. The ground-state energy

We have to notice that the escape tubes are very deep and not as narrow as one would expect.
The area of the sectionsV(A,B,C,D)(x, y) = E remains infinite (!) at an arbitrary negative
energyE. The shape of these sections resembles their quarticx2y2 predecessors with a
steady narrowing proportional, say, to 1/x for x � 1. Still, in contrast to the positively
semi-definite tubes inV[0](x, y) > 0, their present narrowing seems more than compensated
by the quick downward fall of their bottom—this decrease is proportional to−|A|x2 at
y = 0, i.e. quadratic! With the same parameters as above, the situation is illustrated in
figure 2. In a broad interval of energies 2

√−E ∈ (3, 9) the thinning of our escape sinks
seems virtually negligible.

The flavour of the paradox strengthens with the subsequent observation that our
only condition δ > 0 of the impenetrability of sinks in lemma is, in fact, entirely
independent of the signs ofα and β. A reversal of these signs would changeC > 0
into C < 0 and flip thequartic, asymptotically very strong part of our potential upside
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Figure 1. The negative half of potentialV(−1,−1,0,1.21)(x, y).

Figure 2. The energy-dependence of boundariesV(−1,−1,0,1.21)(x, y) = E at (a) E = − 9
4 , (b)

E = − 25
4 , (c) E = − 49

4 and (d) E = − 81
4 .

down, (x2y2 > 0) → (−x2y2 < 0). This is a significant change but it only shifts the
energies. The lower estimate of the ground-state energies

E(g) > α + β ≡ C

2
√
D

(4)

holds for all the Hamiltonians (2) withδ > 0.
For a proof, let us replaceM ∈ (1,∞) by ε = 1− √1− 1/M ∈ (0, 1). With the

above inequality− d2

dq2 + ω2q2 > |ω| applied to equation (3) once more, this gives us the
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ε-dependent family of estimates

E(g) > (α + β)(1− ε)+ 2
√
(δ − γ ε)(2ε − ε2) (5)

which confirms equation (4) at any sufficiently smallε.
An improved estimate ofE(g) may be computed from equation (5) at a right-hand side

maximum (achieved at an optimal valueε(opt)). In the most interesting bottomless case with
δ < γ we may denoteδ/2γ = ρ2 ∈ (0, 1

2), renormalizeε = 2ρ2η, η ∈ (0, 1) and put

E(g) = (α + β)+ 23/2δγ−1/2 max
η∈(0,1)

W(η, θ) θ = −Arsinh

[√
1

2γ

(
α + β

2

)]
(6)

whereW(η, θ) = η sinhθ +
√
η(1− η)(1− ρ2η) andθ ∈ (−∞,∞).

A simplification occurs atθ = 0 where the derivative ofW(η, 0) with respect to
η vanishes at a unique root of an algebraic quadratic equation. We get a unique lower
estimate of energies which is a decreasing function of the parameterρ2 ∈ (0, 1

2),

max
η∈(0,1)

W(η, 0) =
√
(F (ρ)+ ρ2)(F (ρ)+ 1)

(F (ρ)+ ρ2+ 1)3
∈
(

1√
3
√

3
,

1

2

)
= (0.438 69. . . ,0.5) (7)

andF(ρ) =
√

1− ρ2+ ρ4 ∈ (√3/2, 1).
At θ 6= 0 a similar formula would contain the root of a biquadratic equation. A simple

algorithm may be recommended instead. Its inspiration comes from the observation that in
the interval(0, 1), the graph of the function

√
η(1− η) is just the upper half of a circle. Its

multiplication by the decreasing function
√

1− ρ2η only slightly deforms this shape. Its
maximum moves down and to the left. The addition of a linear function gives the full graph
of W(η, θ) as another very smooth deformation with the right end shifted up or down. Our
idea is to approximate the decreasing factor

√
1− ρ2η ∈ ( 1

2, 1) by a constant.
At an initial n = 0 and with an extreme choice ofη = ηn = 1 we shall define

sinhθn = sinhθ/
√
(1− ρ2ηn) and minorize

W(η, θ) > Wn(η, θn)×
√

1− ρ2ηn η 6 ηn Wn(η, θn) = η sinhθn +
√
η(1− η).

(8)

The (unique eligible) maximum of the simplified functionWn(η, θn) lies at the point
ηn+1 = expθn/(2 coshθn). Its value is easily found,

max
η∈(0,1)

Wn(η, θn) = Wn(ηn+1, θn) = 1+ exp 2θn
4 coshθn

(9)

and remains compatible with the minorization (8). Our approximate graph over-estimates
the correct one forη > ηn+1 and under-estimates it forη < ηn+1. The true maximum must
still lie to the left from its guessηn+1. The validity of minorization (8) is preserved atn+1.

We may iterate the whole construction until a sufficient numerical precision is achieved.
Table 1 samples its rate of convergence for sinhθ = 1 and 2 atρ2 = 0.4.

3. Summary

In a weakly anharmonic regime (i.e. say, forα = O(1) = β and smallγ andδ) our estimate
(4) looks very perturbative. The ground-state wavefunctions—perhaps, variational—may be
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Table 1. Iterative determination of the lower energy estimates (6): (a) for sinhθ = 1; and (b)
for sinhθ = 2.

Iteration ηn θn Maximum

(a)
0 1.000 1.073 1.000
1 0.895 1.046 4 1.140 59
2 0.890 2 1.045 21 1.141 076
3 0.889 969 1.045 154 1.141 095 2
4 0.889 957 7 1.045 1516 1.141 096 12

0 0.889 900 1.045 138 1.141 101
1 0.889 954 4 1.045 1508 1.141 096 37

(b)
0 1.000 1.677 2.000
1 0.966 3 1.666 89 2.073 945
2 0.965 570 1.666 6847 2.073 984 6
3 0.965 556 0 1.666 6805 2.073 985 3
4 0.965 555 73 1.666 6804 2.073 985 3

0 0.965 555 69 1.666 6804 2.073 985 3
1 0.965 555 72 1.666 6804 2.073 985 3

expected to lie very close to the well known harmonic oscillator gaussians. The growth of
γ does not change the picture too much. To our only surprise, the improved Gaussian

ψ(x, y) = exp

(
−α

2
x2− β

2
y2− γ

2
x2y2

)
(10)

becomes theexact ground-state wavefunction atδ = 0.
A crisis comes when we try to diminish the coefficientsα or β. The norm ofψ(x, y) in

equation (10) starts growing and indicates a possible collapse of the system. Quickly, we re-
establish the positivity ofδ > 0. Of no avail! The threat of collapse becomes unavoidable.
The seemingly innocent conditionδ = 0 acquires its real physical significance as a point
where the quantum impenetrability of our downward sinks is lost, atα = β = 0 at least.

A deeper analysis of our lemma and its proof at anyα andβ recovers that after a change
of sign of δ, our estimates start working in the opposite direction. In particular, deeply in
our escape tubes, thelocal approximants of the bound-state energies movedownwards.
Quantum particles commence an accelerated motion and, after all, disappear in infinity. In
our bottomless and, now, only slightly more repulsive potential, the discrete spectrum of
the energies collapses.

We may conclude that the apparent physical paradox of quantum confinement in the
presence of an overall repulsion is clarified. It is resolved in full analogy with the central
symmetric attraction≈ v/r2. Beyond a certain limit, the classical picture re-enters the
scene. Non-trivial mathematics must be used. The present text revitalizes and generalizes
Rellich’s ideas [8] and Simon’s ‘sliced bread’ rediscovery [7] to forces which arenot
bounded from below. In such a case we lose the safe ‘uncertainty principle’ intuition
(plane waves become accelerated). Our ‘asymptotically bottomless’ forces require a more
tricky treatment (basically, a local harmonic re-interpretation of transversal modes of the
wavefunctions). Of course, such an analysis may be expected to be transferrable far beyond
our particular sextic example.
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References

[1] Messiah A 1961Quantum Mechanics(Amsterdam: North-Holland) ch I
[2] Reed M and Simon B 1975Methods of Modern Mathematical Physics II: Fourier Analysis, Self-adjointness

(New York: Academic) ch X.2
[3] Gurzwiller M C 1980Phys. Rev. Lett.45 150
[4] Eckhardt B 1988Phys. Rep.163 205 (Appendix A)
[5] Carnegie A and Percival I C 1984 J. Phys. A: Math. Gen.17 801
[6] Savvidy G K 1984Nucl. Phys.B 246 302
[7] Simon B 1983Ann. Phys., NY146 209
[8] Rellich F 1948Studies and Essaysed K Freidrichs, O Neugebauer and J Stoker (New York: Interscience)

p 339


